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The widespread utilization of submolecular motion in key bio-
logical processes is inspiring scientists to try to bridge the gap be-
tween synthetic chemical systems, which, by and large, rely upon
electronic and chemical effects and do not exploit molecular-level
motion (a notable exception being liquid crystals), and the macro-
scopic world, where our everyday machines rely upon the controlled
movement of multiple components to perform specific tasks. Most
efforts toward this goal have focused on establishing methods (for
example, the use of light) to control the positioning or movement
of submolecular fragments,1 but relatively little attention2 has been
given to what the effects of such motion might be. A bi-stable [2]-
rotaxane (a “molecular shuttle”) was recently described in which a
macrocycle could be moved with great positional integrity between
two well-separated binding sites in response to a photostimulus.3,4

Here we show how this large positional change can be used to
create a light-activated switch for fluorescence, exhibiting an
exceptional 200:1 on-off intensity ratio between the translational
states (∼85:1 between the photostationary state and thecis-isomer).5

We suggest that such “mechanical switching” could form the basis
for many different types of synthetic property-changing devices
and materials that, like biological systems, function through
mechanical motion at the molecular level (Figure 1).

Molecular shuttleE/Z-1 (Scheme 1) has several key features:
A fumaramide-maleamide unit (dark blue-pink) provides a means
of changing the position of the macrocycle on the thread by altering
the binding affinity of one station for the macrocycle by several
kilocalories per mole using various olefin isomerization reactions
(photochemical, chemical, or thermal).3 A glycylglycine unit
(orange) offers a nonreactive station of intermediate binding affinity
between fumaramide and maleamide.2c The spacer between the
stations, here a C11 alkyl chain, can be chosen to suit the distance
dependency of the property one wishes to influence. Here we
illustrate the concept using fluorescence, introduced by attaching
a 9-carboxyanthracene residue (which is sufficiently bulky to also
act as a “stopper”) to the peptide station. The macrocycle contains
two pyridinium units, which are known to quench anthracene
fluorescence through electron transfer.6 Since electron transfer can
sometimes be remarkably efficient over long distances, we carried
out INDO/S calculations (see Supporting Information) to confirm
that the quenching should have the required high distance and
orientation dependency inE/Z-1.

RotaxaneE-1 was prepared in 48% yield from threadE-2 and
converted intoZ-1 by photoisomerization (Scheme 1). The1H NMR
of Z-1 in CDCl37 (Figure 2) confirms the location of the macrocycle
to be predominantly over the GlyGly residue. Hg and Hi are shielded
by 0.6 and 0.8 ppm with respect to their position inZ-2, and no
significant shifts are observed for Ho′ or Hp′. In contrast, inE-1 the
macrocycle resides overwhelmingly over the fumaramide station.

Ho and Hp are shifted 1.1 ppm upfield with respect to their positions
in the thread, while Hi and Hg occur at identical chemical shifts in
rotaxane and thread. The1H NMR signal for HA and the significant
shifts in the pyridine signals compared to the free base rotaxanes
(see SI) confirm the protonation of the pyridine rings.

The photostationary state (PSS) ofE-1/Z-1 (or E-2/Z-2) at 312
nm in CH2Cl2 is 40:60 (electronic absorption spectra are provided
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Figure 1. Exploiting a well-defined, large-amplitude positional change to
trigger property changes. (i) A and B interact to produce a physical response
(fluorescence quenching, specific dipole or magnetic moment, NLO proper-
ties, color, creation/concealment of a binding site or reactive/catalytic group,
hydrophobic/hydrophilic region, etc.); (ii) moving A and B far apart mechan-
ically switches off the interaction and the corresponding property effect.

Scheme 1. Synthesis of Molecular Shuttle E/Z-1a

a Reaction conditions: (i) potassium phthalimide, DMF, 80°C, 16 h,
98%; (ii) NH2NH2‚H2O, EtOH, reflux, 1 h, then (Boc)2O, KOH, MeOH,
∼100%; (iii) 1-[3-dimethylaminopropyl]-3-ethylcarbodiimide hydrochloride
(EDCI), 4-(dimethylamino)pyridine (DMAP), CH2Cl2, 60%; (iv) trifluo-
roacetic acid (TFA), CH2Cl2; (v) EDCI, DMAP, CH2Cl2/DMF, (E)-3-(2,2-
diphenylethylcarbamoyl)acrylic acid 60%; (vi) 3,5-pyridinedicarbonyl
dichloride,p-xylylenediamine, Et3N, CHCl3, 48%; (vii) TFA, CH2Cl2; (viii)
312 nm, CH2Cl2, 20 min, 60%; (ix) 312 nm, CH2Cl2, 20 min, 40%, or
piperidine (3 equiv), CH2Cl2, rt, 16 h∼100% or C2H2Cl4, 115°C, 2 days,
90%.Z-2 is thecis-olefin isomer ofE-2, its chemical structure is formally
provided in the SI.
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in the Supporting Information) and, starting from either isomer, is
reached within 20 min with no evidence of any decomposition.

Fluorescence spectra (λexc ) 365 nm) were obtained from 0.8
µM solutions ofE-1 andZ-1 in CH2Cl2, CH3CN, CH3OH, and DMF
(Figure 3). A remarkable 200:1 intensity ratio between the trans
and cis shuttles (∼85:1 betweenZ-1 and the PSS) is observed for
the CH2Cl2 solutions at the maximum ofE-1 emission (λmax ) 417
nm), Z-1’s fluorescence being almost completely quenched by the
pyridinium units and strongly red-shifted (Supporting Information)
by intercomponent hydrogen bonding of the anthracene carboxyam-
ide group to the macrocycle.4d,8,9The emission spectra in the vari-
ous solvents show anincreasein Z-1 luminescence with increasing
hydrogen bond basicity10 (CH2Cl2 < CH3CN < CH3OH < DMF),
consistent with a reduction in positional integrity of the macrocycle
at the GlyGly station as the intercomponent hydrogen bonds are
weakened. Conversely, the fluorescence intensity ofE-1 generally

decreaseswith this trend (opposite to the normally observed polarity
effects on electron transfer and excited-state relaxation processes)
as the macrocycle increasingly spends time away from the fumar-
amide station in positions within efficient quenching distance of
the anthracene. The exception, the reduced fluorescence intensity
of E-1 in CH2Cl2 compared to that in CH3CN and CH3OH, is
presumably a result of some H-bond-induced intramolecular folding.

The bi-stability and integrity of the macrocycle positioning in
CH2Cl2 means that starting with pureZ-1 (the “off” state) the system
can be written with light at 312 nm to give a photostationaryE/Z-1
state which emits∼85 times more light than the starting material
when addressed at a remote wavelength (λexc ) 365 nm).11 Once
written, it is essentially stable (T1/2 ≈ 24 h at 115°C) unless treated
with piperidine. The most important feature of the system, however,
is that it demonstrates a principle which could be used to make
switches that can changeanyproperty that can be made to depend
on the spatial separation of submolecular fragments (Figure 1). The
use of stimuli-induced motion to bring individual components
together to perform specific tasks (e.g. electron transfer from one
part to another) which produce an effect (e.g., fluorescence
quenching), arguably makes such structures true mechanical mo-
lecular machines.
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Figure 2. Partial1H NMR spectra (400 MHz, CDCl3, 298 K) of (a) thread
Z-2, (b) [2]rotaxaneZ-1 (HA δ ) 13.36 ppm), (c) threadE-2, and (d) [2]-
rotaxaneE-1 (HA δ ) 13.45 ppm). All samples contained 2 equiv of CF3-
COOH. The assignments correspond to the lettering shown in Scheme 1.

Figure 3. (a) Fluorescence emission spectra (λexc ) 365 nm, 0.8µM, 298
K) of E-1 (blue), Z-1 (pink), and the photostationary state (PSS, mauve).
The difference in fluorescence intensity betweenZ-1 andE-1 or the PSS is
clearly visible to the naked eye (inset: picture of the cuvettes under 365
nm UV light). (b) Fluorescence emission spectra (λexc ) 365 nm, 0.8µM,
298 K) of E-1 (blue) andZ-1 (pink) in each of CH2Cl2, CH3CN, CH3OH,
and DMF. All the experiments were carried out after the addition of 2 equiv
of CF3COOH (TFA). Similar quenching and red-shifting was observed for
the bis(methylpyridinium tetrafluoroborate) analogue ofZ-1 ((i) Z-1, MeI,
CH3CN, (ii) AgBF4). In the absence of TFA,E-1 and Z-1 exhibit
fluorescence spectra similar to those of the corresponding isophthalamide
macrocycle-based rotaxanes (i.e. nonquenched and, forZ-1, broadened and
red-shifted).4d In contrast, both threads (E/Z-2) have fluorescence spectra
indistinguishable from those of anthracene 9-carboxyamide and are unaf-
fected by the addition of TFA.
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